CONSUMER CONFIDENCE REPORT Report Covers Calendar Year: January 1 – December 31, _2017 Este informe contiene informaction muy importante sobre el aqua usted bebe. Tradúscalo ó hable con alguien que lo entienda bien, I. Public Water System (PWS) Information | PWS Name: | Town of Pa | stagonia | | | | | |---|--------------------|------------|----------|-----------------------|---|---| | PWS ID# | AZ04-12-0 | 06 | | | | | | Owner / Opera | ator Name: | Town of Pa | atagonia | Operator: Ral | ph Smith | | | Telephone # | 394-2229 | | Fax# | 394-2034 | E-mail | pwtreat@patagoniaoffice.net | | We want our valued
regularly scheduled
meetings dates and | l meetings, please | | | quality. If you would | l like to learn more abou
at <u>520-459-7040</u> | nt public participation or to attend any of our for additional opportunity and | ### II. Drinking Water Sources The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity. Our water source(s). 2 wells located at second st. and doubletree lane #55-605595 and 55-605596 #### III. Consecutive Connection Sources A public water system that receives some or all of its finished water from one or more wholesale systems by means of a direct connection or through the distribution system of one or more consecutive systems. Systems that purchase water from another system report regulated contaminants detected from the PWS ID # AZ04 - 12-006 provides a consecutive connection source of water. source water supply in a separate table. ### IV, Drinking Water Contaminants Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife, Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and herbicides that may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses. Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and also may come from gas stations, urban stormwater runoff, and septic systems. Radioactive contaminants, that can be naturally occurring or be the result of oil and gas production and mining activities. #### V. Vulnerable Population Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at 1-800-426-4791. ## Source Water Assessment If the public water system received a Source Water Assessment (SWA), include a brief summary of the susceptibility as summarized in the SWA report. Further source water assessment documentation can be obtained by contacting ADEQ, 602-771-4641. ## VII. Definitions AL = Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements, MCL = Maximum Contaminant Level - The "Maximum Allowed" is the highest level of a contaminant that is allowed in drinking water. MCLG = Maximum Contaminant Level Goal - The "Goal" is the level of a contaminant in drinking water below which there is no known or expected risk to MFL = Million fibers per liter. MRDL = Maximum Residual Disinfectant Level. MRDLG = Maximum Residual Disinfectant Level Goal. MREM = Millirems per year - a measure of radiation absorbed by the body. NA = Not Applicable, sampling was not completed by regulation or was not required. NTU = Nephelometric Turbidity Units, a measure of water clarity. PCi/L = Picocuries per liter - picocuries per liter is a measure of the radioactivity in water. PPM = Parts per million or Milligrams per liter (mg/L). dqq = 0001 x triqq PPB = Parts per billion or Micrograms per liter (µg/L). $ppb \times 1000 = ppt$ PPT = Parts per trillion or Nanograms per liter. PPO = Parts per quadrillion or Picograms per liter. $pp1 \times 1000 = ppq$ TT = Treatment Technique - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water. ## VIII. Health Effects Language Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods-of-time because of rainfall or agricultural activity. If you are caring for an infant, and detected nitrate levels are above 5 ppm, you should ask advice from your health care provider. If arsenic is less than or equal to the MCL, your drinking water meets EPA's standards. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems. Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that fead levels at your home may he higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your Revised May 25, 2010 I of 6 home's water, you may wish to have your water tested. Flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the EPA Safe Drinking Water Hotline at 1-800-426-4791. | IX. Water Quality Data | ···· | | | | · | | | |---|---------------------------------------|---------------------------|--|------------|-------------|---------------------------------------|--| | Contaminant (units) | Violation
Y/N | Highest Level
Detected | Range Detected Absent (A) or Present (P) | MCL | MCLG | Sample
Month
Year | Likely Source of
Contaminatio | | Microbiological | · · · · · · · · · · · · · · · · · · · | | | | | , " | | | Total Coliform Bacteria
(System takes ≥ 12 monthly samples)
5% of monthly samples are positive;
(System takes ≤ 12 monthly samples)
1 positive monthly sample | none | 0 | | 0 | 0 | 12 for 2017
1 per month | Naturally Present in
Environment | | Fecal coliform and E. Coli
(TC Rule) | | 0 | | 0 | 0 | 7-17 | Homan and animal
fecal waste | | Fecal Indicators (E. coli, enterocacci or coliphage) (GW Rule) | | 0 | | TT | n/a | | Human and animal fecal waste | | Total Organic Carbon (ppm) | | | | TT | п/а | | Naturally present in
the environment | | Turbidity (NTU), surface water only | | | <u> </u> | TT | n/a | | Soil Runoff | | Disinfectants | T | | 1 | 1 | 1 | 1 | Water additive used to | | Chloramines (ppm) | | | <u> </u> | MRDL = 4 | MRDLG = 4 | | control microbes Water additive used to | | Chlorine (ppm) | n | .18 average | | MRDL. = 4 | MRDLG = 4 | monthly | central microbes | | Chloride dioxide (ppb) | | | | MRDL = 800 | MRDLG = 800 | | Water additive used to
control microbes | | Disinfection By-Products | | | 1 | 1.00 | 1 , | T | Byproduct of drinking | | Haloacetic Acids (ppb) (HAA5) | n | <.2 | | 60 | n/a | 7-17 | water disinfection Byproduct of drinking | | Total Tribalomethanes (ppb)
(TTHM) | n | 2.6 | | 80 | n/a | 7-17 | water disinfection | | Bromate (pph) | | | | 10 | 0 | | Byproduct of drinking
water disinfection | | Chlorite (ppm) | | | | 1 | 0.8 | | Byproduct of drinking water disinfection | | Lead & Copper | 7 | | • | 1 | 1 | · · · · · · · · · · · · · · · · · · · | Cai | | Copper (ppm) | n | =,745 ppm | | AL, = 1.3 | ALG = 1.3 | 7-16 | Corrosion of household plumbing systems; crosion of natural deposits | | Lead (ppb) | n | ~7.6 ppb | - | AL = 15 | 0 | 7-16 | WCorrosion of
household plumbing
systems; crosion of
natural deposits | | Radionuclides | 1 | , | | è | | | | | Betn / photon emitters (mrem/yr) | | | | 4 | 0 | | Decay of natural and
man-made deposits | | Alpha emitters (pCi/L) | n | | | 15 | 0 | | Erosion of natural deposits | | Combined Radium 226 & 228 (pCi/L) | n | | | 5 | 0 | | Erosion of natural deposits | | Uranium (pCi/L) | | | | 30 | 0 | not required
to test this
year | Erosion of natural deposits | | Inorganics | η | 1 | + | 1 | | <u> </u> | 1 Discharge Co. | | Antimony (ppb) | n | | | 6 | 6 | | Discharge from petroleum refineries; fire retardants; ceramics, electronies and solder | | Arsenic (ppb) | n | 2 | | 10 | 0 | 8-16 | Erosion of untural
deposits, runoff from
orchards, runoff from
glass and electronics
production wastes | | Asbestos (MFL) | n | | | 7 | 7 | | Decay of asbestos
coment water mains,
Eroston of natural
deposits | | Barium (ppin) | n | .029 | | 2 | 2 | 8-16 | Discharge of drilling
wastes; discharge fror
motal refineries;
Erosion of natural
deposits | | Beryllium (ppb) | n | | | 4 | 4 | | Discharge from metal
refineries and coal-
burning factories;
discharge from
electrical, aerospace, | | Cadmium (ppb) | n | <.5 | | 5 | 5 | 8-16 | and defense industries
Corrosion of | | 0 : 314 07 2010 | | | <u></u> | | | | galvanized pipes; | | Contaminant (units) | Violation
Y/N | Highest Level
Detected | Range Detected
Absent (A)
or Present (P) | MCL | MCLG | Sample
Month
Year | Likely Source of
Contaminatio | |-----------------------------------|------------------|---------------------------|--|-----|------|------------------------------|--| | | | | | | | | natural deposits; metal
refineries; runoff from
waste batteries and
paints | | Chromium (ppb) | n | <1 | | 100 | 100 | 8-16 | Discharge from steel
and pulp mills;
Erosion of uniural
deposits | | Cyanide (ppb) | מ | <.5 | | 200 | 200 | 8-16 | Discharge from
steel/metal factories:
Discharge from plastic
and fertilizer factories | | Fluoride (ppm) | n | .45 | | 4 | 4 | 8-16 | Erosion of natural
deposits; water
additive which
promotes strong teeth;
discharge from
fertifizer and
altuminum factories | | Mercury (pph) | n | <.2 | | 2 | 2 | 8-16 | Eresion of natural
deposits; Discharge
from refineries and
factories; Renoff from
landfills and cropland. | | Nitrate (ppm) | n | 1.0 | | 10 | 10 | 5-2-17 | Runoff from fertilizer
use; lenching from
septic tanks, sewage;
erosion of natural
deposits | | Nitrite (ppm) | n | | | | 1 | Not
required
this year | Runoff from
fertilizer use;
leaching from
septic tanks,
sewage; erosion of
natural deposits | | Selenium (ppb) | n | <5 | | 50 | 50 | 8-16 | Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines | | Thallium (ppb) | n | <1 | | 2 | 0.5 | 8-16 | | | 2.4-D (ppb) | N | | | 70 | 70 | Not
required
this year | | | 2,4,5-TP (Silvex) (ppb) | N | | | 50 | 50 | Not
required
this year | | | Acrylamide | N | | | TT | 0 | Not
required
this year | | | Alachlor (ppb) | N | Nd<.1 | | 2 | 0 | 8-16 | Not required this year | | Atrazine (ppb) | N | | | 3 | 3 | Not
required
this year | Runoff from
herbicide used on
row crops | | Benzo (a) pyrene (PAH) (ppt) | N | | | 200 | 0 | Not
required
this year | Leaching from
linings of water
storage tanks and
distribution lines | | Carbofuran (ppb) | N | | | 40 | 40 | Not
required
this year | nt used on rice and
alfalfa | | Chlordane (ppb) | N | Nd<.1 | | 2 | 0 | 8-16 | Residue of banned termiticide | | Dalapon (pph) | N | | | 200 | 200 | Not
required
this year | Runoff from
herbicide used on
rights of way | | Di (2-ethylhexyl) adipate (ppb) | N | | | 400 | 400 | Not required this year | Discharge from chemical factories | | Di (2-ethylhexyl) phthatate (ppb) | N | | | 6 | 0 | Not
required
this year | Discharge from
rubber and
chemical factories | Revised May 25, 2010 | Contaminant (units) | Violation
Y/N | Highest Level
Detected | Range Detected
Absent (A)
or Present (P) | MCL | MCLG | Sample
Month
Year | Likely Source of
Contaminatio | |--|------------------|---------------------------|--|-----|------|-------------------------------|--| | Dibromochloropropane (ppt) | N | <10 | | 200 | 0 | 8-16 | Runoff/leaching
from soil furnigant
used on soybeans,
cotton, pineapples,
and orchards | | Dinoseb (pph) | N | | | 7 | 7 | Not
required
this year | Runoff from
herbicide used on
soybeans and
vegetables | | Diquat (ppb) | И | | | 20 | 20 | Not
required
this year | Runoff from
herbicide use | | Dioxin [2,3,7.8-TCDD] (ppq) | N | | | 30 | 0 | Not.
required
this year | Emissions from
waste incineration
and other
combustion;
discharge from
chemical factories | | Endothali (ppb) | N | | | 100 | 100 | Not
required
this year | Runoff from
herbicide use | | Endrin (ppb) | N | <.01 | | 2 | 2 | 8-16 | Residue of hanned insecticide | | Epichlorohydrin | N | | | TT | 0 | Not
required
this year | Discharge from industrial chemical factories; an impurity of some water treatment chemicals | | Ethylene dibromide (ppt) | N | <10 | | 50 | 0 | 8-16 | Discharge from petroleum refineries | | Glyphosate (ppb) | N | | | 700 | 700 | Not
required
this year | Runoff from
herbicide use | | Heptachlor (pp1) | N | <10 | | 400 | 0 | 8-16 | Residue of banned terniticide | | Heptachlor epoxide (ppt) | N | <10 | | 200 | 0 | 8-16 | Breakdown of heptachlor | | Hexachlorobenzene (ppb) | N | | | 1 | 0 | Not
required
this year | Discharge from
metal refineries and
agricultural
chemical factories | | Hexachlorocyclo pentadione (ppb) | И | | | 50 | 50 | Not
required
this year | Discharge from chemical factories | | Lindane (ppt) | И | <10 | | 200 | 200 | 8-16 | Runoff/leaching
from insecticide
used on cattle,
lumber, gardens | | Methoxychlor (ppb) | N | <.05 | | 40 | 40 | 8-16 | Runoff/leaching
from insecticide
used on fruits.
vegetables, alfalfa,
livestock | | Oxamyl [Vydate] (ppb) | N | | i de la constanta consta | 200 | 200 | Not
required
this year | Runoff/leaching
from insecticide
used on apples,
potatoes and
tomatoes | | PCBs [Polychlorinated biphenyls] (ppt) | N | | | 500 | 0 | Not
required
this year | Runoff from
landfills; discharge
of waste chemicals | | Pentachlorophenol (pph) | N | | | I | 0 | Not required this year | Discharge from wood preserving factories | | Picloram (ppb) | N | | | 500 | 500 | Not
required
this year | Herbicide runolY | | Simazine (ppb) | N | | | 4 | 4 | Not
required | Herbicide runoff | | Contaminant (units) | Violation
Y/N | Highest Level
Detected | Range Detected
Absent (A)
or Present (P) | MCL | MCLG | Sample
Month
Year | Likely Source of
Contaminatio | |----------------------------------|------------------|---------------------------|--|-----|------|-------------------------|---| | - | | | | | | this year | | | Toxaphene (ppb) | រា | <.5 | | 3 | 0 | 8-16 | Runoff/leaching
from insecticide
used on cotton and
cattle | | Volatile Organics | T . | I | | 1 | | | Discharge from | | Benzene (ppb) | N | ND <.5 | | 5 | 5 | 8-16 | factories; leaching
from gas storage
tanks and landfills | | Carbon tetrachloride (ppb) | N | ND <.5 | | 5 | 5 | 8-16 | Discharge from
chemical plants and
other industrial
activities | | Chlorobenzene (ppb) | N | ND <.5 | | 100 | 100 | 8-16 | Discharge from chemical and agricultural chemical factories | | o-Dichlorobenzene (ppb) | N | ND <.5 | | 600 | 600 | 8-16 | Discharge from
industrial chemical
factories | | p-Dichlorobenzene (ppb) | N | ND <.5 | | 75 | 75 | 8-16 | Discharge from
industrial chemical
factories | | 1,2-Dichloroethane (ppb) | N | ND<.5 | | 5 | 5 | 8-16 | Discharge from
industrial chemical
factories | | 1,1-Dichloroethylene (ppb) | N | ND <.5 | | 7 | 7 | 8-16 | Discharge from
industrial chemical
factories | | cis-1,2-Dichloroethylene (ppb) | N | ND <.5 | | 70 | 70 | 8-16 | Discharge from industrial chemical factories | | trans-1,2-Dichloroethylene (ppb) | N | ND <.5 | | 100 | 100 | 8-16 | Discharge from industrial chemical factories | | Dichloromethane (ppb) | N | ND<.5 | | 5 | 5 | 8-16 | Discharge from pharmaceutical and chemical factories | | 1,2-Dichloropropane (µpb) | N | ND <.5 | | 5 | 5 | 8-16 | Discharge from industrial chemical factories | | Ethylbenzene (ppb) | N | ND <.5 | | 700 | 700 | 8-16 | Discharge from
petroleum refineries | | Styrene (ppb) | N | ND <.5 | | 100 | 100 | 8-16 | Discharge from rubber and plastic factories; leaching from landfills | | Tetrachlorocthylene (ppb) | N | ND <.5 | | 5 | 5 | 8-16 | Discharge from
factories and dry
cleaners | | 1,2,4-Trichlorobenzene (ppb) | N | ND<.5 | | 70 | 70 | 8-16 | Discharge from textile-finishing factories | | 1,1,1-Trichtoroethane (ppb) | N | ND <.5 | | 200 | 200 | 8-16 | Discharge from
metal degreasing
sites and other
factories | | 1.1.2-Trichloroethane (ppb) | N | ND <.5 | | 5 | 5 | 8-16 | Discharge from industrial chemical factories | | Trichloroethylene (ppb) | N | ND <.5 | | 5 | 5 | 8-16 | Discharge from metal degreasing sites and other factories | | Toluene (ppm) | N | ND <.0005 | | 1 | 1 | 8-16 | Discharge from petroleum factories | | Vinyl Chloride (ppb) | N | ND <.3 | | 2 | 2 | 8-16 | Leaching from PVC piping; discharge from chemical | | Contaminant (units) | Violation
Y/N | Highest Level
Detected | Range Detected
Absent (A)
or Present (P) | MCL | MCLG | Sample
Month
Year | Likely Source of
Contaminatio | |---------------------|------------------|---------------------------|--|----------|------|-------------------------|--| | | <u> </u> | | | <u> </u> | | | factories | | Xylenes (ppm) | N | ND <.0005 | | 10 | 10 | 8-16 | Discharge from petroleum or chemical factories | # X. Cryptosporidium Monitoring (surface water systems only) Our water is ground water only | We detected Cryptosporidium in the finished water or source water. We detected Cryptosporidium in of our samples tested. | | | | | | | | |--|--|--|--|--|--|--|--| | We have to provide additional treatment if Cryptosporidium is found at greater than 0.075 oocyst per liter. | | | | | | | | | We believe it is important for you to know that <i>Cryptosporidium</i> may cause serious illness in immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders. These people should seek advice form their health care providers. | | | | | | | | # XI. Stage 2 Disinfectants and Disinfection By-products Rule Stage 2 DBP Rule requires some systems to complete an initial Distribution System Evaluation (IDSE) to characterize DBP levels in their distribution systems and identify locations to monitor DBPs for Stage 2 DBP Rule compliance. The following table summarizes the individual sample results for the IDSE monitoring in 2009: | Contaminant | Number of Minimum Level
Analyses Detected | | Highest Level
Detected | | |------------------------------------|--|---------|---------------------------|--| | Haloacetic Acids (HAA5) (ppb) | 1 | <2 ppb | <2 ppb | | | Total Trihalomethanes (TTHM) (ppb) | 1 | 2.6 ppb | 2.6 ppb | | ## XII. Violations | Type / Description | Compliance Period | Corrective Actions taken by PWS | |--------------------|----------------------|---------------------------------| | None | 1-1-17 thru 12-31-17 | None necessary | | | | | | | | | | | | | | | | | An explanation of the violation(s) in the above table, the steps taken to resolve the violation(s) and any required health effects information are required to be included with this report. (Attach copy of Public Notice if available.) ## **Source Water Assessment** • : Based on the information currently available on the hydrogeologic settings of and the adjacent land uses that are in the specified proximity of the drinking water source(s) of this public water system, the department has given a low risk designation for the degree to which this public water system drinking water source(s) are protected. A low risk designation indicates that most source water protection measures are either already implemented, or the hydrogeology is such that the source water protection measures will have little impact on protection. Further source water assessment documentation can be obtained by contacting ADEQ. ### Lead Informational Statement: Lead, in drinking water, is primarily from materials and components associated with service lines and home plumbing. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Town of Patagonia is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead. Water Quality Data - Regulated Contaminants | Lead & Copper | MCL
Violation
Y or N | 90 th Percentile | Number of
Samples
Exceeds AL | AL | ALG | Sample
Month
& Year | Likely Source of
Contamination | |------------------------|----------------------------|---|---------------------------------------|-----|------|---------------------------|--| | Copper (ppm) | N | .53 | 0 | 1.3 | 1.3 | July
2016 | Corrosion of household
plumbing systems; erosion of
natural deposits | | Lead (ppb) | N | 3 | 0 | 15 | 0 | July
2016 | Corrosion of household
plumbing systems; erosion of
natural deposits | | Radionuclides | MCL
Violation
Y or N | Running
Annual Average
(RAA) <u>OR</u>
Highest Level
Detected | Range of All
Samples
(Low-High) | MCL | MCLG | Sample
Month
& Year | Likely Source of
Contamination | | Alpha Emitters (pCi/L) | N | 5.9 | 5.9 | 15 | 0 | August
2016 | Erosion of natural deposits | Violation Summary (for MCL, MRDL, AL, TT, or Monitoring & Reporting Requirement) | Violation Type | Explanation, Health Effects | Time Period | Corrective Actions | |-------------------|-----------------------------------|-------------|--------------------------------------| | Reporting Failure | Submitted 2016 CCR after deadline | 17 days | Sent in CCR to ADEQ ON July 18, 2017 |